miércoles, 5 de diciembre de 2012

MUY INTERESANTE

Un satélite es transportado a su órbita abordo de un cohete capaz de alcanzar la suficiente requerida para no verse influenciado por el campo gravitatorio terrestre.
Una vez conseguido esto, es virtualmente posible conseguir cualquier plano o altitud de la órbita mediante la utilización de modernos cohetes. El plano de la órbita se denomina inclinación. Este parámetro se ilustra en la figura:
 VELOCIDAD DE LA ÓRBITA:
Un satélite puede permanecer en su órbita sólo si su velocidad es lo suficientemente mayor como para vencer la gravedad y que la requerida para escapar de la gravedad. La velocidad del satélite es pues como un compromiso entre esos dos factores pero ha de absolutamente precisa para la altitud elegida.

V=K/(sqrt(r+a)) Km/s

donde:
V=a velocidad de la órbita en kilómetros por segundo.
a=altitud de la órbita sobre la superficie de la tierra, en .
r=el medio de la tierra, aproximadamente 6371Km.
K=630
Aunque la tierra no es perfecta y su radio puede variar, vamos a tomar que posee un de 6371Km. La velocidad de un satélite con altitud de 200 Km necesitará una V=177Km/s.
La velocidad para un satélite con una altitud de 1075km será de V=7.3km/s (satélite TRANSIT).

PERIODO DE LA ÓRBITA: El periodo que posee un satélite viene dado por la siguiente fórmula:

P=K(r+a/r)3/2 minutos
donde
  P=periodo de una órbita en minutos.
a=altitud de la órbita sobre la superficie terrestre.
r=radio medio de la tierra.
K=84.49.
El periodo para un satélite cuya altitud es de 200 Km es: P=88.45 minutos.

Comunicación por Satélites
INTRODUCCION 
A principios de 1960, la American Telephone and Telegraph Company (AT&T) publicó estudios, indicando que unos cuantos satélites poderosos, de avanzado, podian soportar mas que toda la AT&T de larga distancia. El costo de estos satélites fue estimado en solo una fracción del costo de las facilidades de microondas terrestres equivalentes. Desafortunadamente, debido a que AT&T era un proveedor de servicios, los reglamentos del gobierno le impedían desarrollar los sistemas de satélites. Corporaciones más pequeñas y menos lucrativas pudieron desarrollar los sistemas de satélites y AT&T continuó invirtiendo billones de dólares cada año en los sistemas de microondas terrestres convencionales. Debido a esto los desarrollos iniciales en la tecnología de satélites tardaron en surgir.
A través de los años, los precios de la mayoría de los bienes y servicios han aumentado sustancialmente; sin embargo, los servicios de comunicación, por satélite, se han vuelto mas accesibles cada año. En la mayoría de los casos, los sistemas de satélites ofrecen mas flexibilidad que los cables submarinos, cables subterráneos escondidos, radio de microondas en línea de vista, radio de dispersión troposférica, o sistemas de fibra óptica.
Esencialmente, un satélite es un repetidor de radio en el cielo (transponder). Un sistema de satélite consiste de un transponder, una estación basada en tierra, para controlar el funcionamiento y una red de usuario, de las estaciones terrestres, que proporciona las facilidades para transmisión y recepción de tráfico de comunicaciones, a través del sistema de satélite. Las transmisiones de satélites se catalogan como bus o carga útil. La de bus incluye mecanismos de control que apoyan la operación de carga útil. La de carga útil es la información del usuario que será transportada a través del sistema. Aunque en los últimos años los nuevos servicios de datos y radioemisión de televisión son mas y más demandados, la transmisión de las señales de teléfono de voz convencional (en forma analógica o digital).
 
SATELITES ORBITALES
Los satélites mencionados, hasta el momento, son llamados satélites orbitales o no síncronos. Los satélites no síncronos giran alrededor de la Tierra en un patrón elíptico o circular de baja altitud. Si el satélite esta girando en la misma dirección de la rotación de la Tierra y a una velocidad angular superior que la de la Tierra, la órbita se llama órbita progrado. Si el satélite esta girando en la dirección opuesta a la rotación de la Tierra o en la misma dirección, pero a una velocidad angular menor a la de la Tierra, la órbita se llama órbita retrograda. Consecuentemente, los satélites no síncronos están alejándose continuamente o cayendo a Tierra, y no permanecen estacionarios en relación a ningún punto particular de la Tierra. Por lo tanto los satélites no síncronos se tienen que usar cuando están disponibles, lo cual puede ser un corto periodo de tiempo, como 15 minutos por órbita. Otra desventaja de los satélites orbitales es la necesidad de usar un equipo costoso y complicado para rastreo en las estaciones terrestres. Cada estación terrestre debe localizar el satélite conforme esta disponible en cada órbita, y después unir su antena al satélite y localizarlo cuando pasa por arriba. Una gran ventaja de los satélites orbitales es que los motores de propulsión no se requieren a bordo de los satélites para mantenerlos en sus órbitas respectivas.

SATELITES GEOESTACIONARIOS
Los satélites geoestacionarios o geosíncronos son satélites que giran en un patrón circular, con una velocidad angular igual a la de la Tierra. Consecuentemente permanecen en una posición fija con respecto a un punto específico en la Tierra. Una ventaja obvia es que están disponibles para todas las estaciones de la Tierra, dentro de su sombra, 100% de las veces. La sombra de un satélite incluye todas las estaciones de la Tierra que tienen un camino visible a él y están dentro del patrón de radiación de las antenas del satélite. Una desventaja obvia es que a bordo, se requieren de dispositivos de propulsión sofisticados y pesados para mantenerlos fijos en una órbita. El tiempo de órbita de un satélite geosíncrono es de 24 h. igual que la Tierra.
CLASIFICACIONES ORBITALES, ESPACIAMIENTO Y ASIGNACIONES DE FRECUENCIA  
Hay dos clasificaciones principales para los satélites de comunicaciones: hiladores (spinners) y satélites estabilizadores de tres ejes. Los satélites espinar, utilizan el movimiento angular de su cuerpo giratorio para proporcionar una estabilidad de giro. Con un estabilizador de tres ejes, el cuerpo permanece fijo en relación a la superficie de la Tierra, mientras que el subsistema interno proporciona una estabilización de giro.
Los satélites geosíncronos deben compartir espacio y espectro de frecuencia limitados, dentro de un arco específico, en una órbita geoestacionaria, aproximadamente a 22,300 millas, arriba del Ecuador. La posición en la ranura depende de la banda de frecuencia de comunicación utilizada. Los satélites trabajando, casi o en la misma frecuencia, deben estar lo suficientemente separados en el espacio para evitar interferir uno con otro. Hay un límite realista del número de estructuras satelitales que pueden estar estacionadas, en un área específica en el espacio. La separación espacial requerida depende de las siguientes variables:
  • Ancho del haz y radiación del lóbulo lateral de la estación terrena y antenas del satélite.
  • Frecuencia de la portadora de RF.
  • Técnica de codificación o de modulación usada.
  • Límites aceptables de interferencia.
  • Potencia de la portadora de transmisión.
Generalmente, se requieren de 3 a 6º de separación espacial dependiendo de las variables establecidas anteriormente.
Las frecuencias de la portadora, más comunes, usadas para las comunicaciones por satélite, son las bandas 6/4 y 14/12 GHz. El primer número es la frecuencia de subida (ascendente) (estación terrena a transponder) y el segundo numero es la frecuencia de bajada (descendente) (transponder a estación terrena). Diferentes frecuencias de subida y de bajada se usan para prevenir que ocurra repetición. Entre mas alta sea la frecuencia de la portadora, más pequeño es el diámetro requerido de la antena para una ganancia específica. La mayoría de los satélites domésticos utilizan la banda 6/4 GHz. Desafortunadamente, esta banda también se usa extensamente para los sistemas de microondas terrestres. Se debe tener cuidado cuando se diseña una red satelital para evitar interferncia de, o interferencia con enlaces de microondas establecidas.
MODELOS DE ENLACE DEL SISTEMA SATELITAL 
Esencialmente, un sistema satelital consiste de tres secciones básicas: una subida, un transponder satelital y una bajada.
Modelo de subida  El principal componente dentro de la sección de subida satelital, es el transmisor de estación terrena. Un típico transmisor de la estación terrena consiste de un modulador de IF, un convertidor de microondas de IF a RF, un amplificador de alta potencia (HPA) y algún medio para limitar la banda del último espectro de salida (por ejemplo, un filtro pasa-bandas de salida). El modulador de IF se convierte la IF convierte las señales de banda base de entrada a una frecuencia intermedia modulada en FM, en PSK o en QAM. El convertidor (mezclador y filtro pasa-bandas) convierte la IF a una frecuencia de portadora de RF apropiada. El HPA proporciona una sensibilidad de entrada adecuada y potencia de salida para propagar la señal al transponder del satélite. Los HPA comúnmente usados son klystons y tubos de onda progresiva.
Transponder  Un típico transponder satelital consta de un dispositivo para limitar la banda de entrada (BPF), un amplificador de bajo ruido de entrada (LNA), un traslador de frecuencias, un amplificador de potencia de bajo nivel y un filtro pasa-bandas de salida. Este transponder es un repetidor de RF a RF. Otras configuraciones de transponder son los repetidores de IF, y de banda base, semejantes a los que se usan en los repetidores de microondas.
Modelo de bajada  Un receptor de estación terrena incluye un BPF de entrada, un LNA y un convertidor de RF a IF. Nuevamente, el BPF limita la potencia del ruido de entrada al LNA. El LNA es un dispositivo altamente sensible, con poco ruido, tal como un amplificador de diodo túnel o un amplificador paramétrico. El convertidor de RF a IF es una combinación de filtro mezclador /pasa-bandas que convierte la señal de RF recibida a una frecuencia de IF.
Enlaces cruzados  Ocasionalmente, hay aplicaciones en donde es necesario comunicarse entre satélites. Esto se realiza usando enlaces cruzados entre satélites o enlaces intersatelitales (ISL). Una desventaja de usar un ISL es que el transmisor y receptor son enviados ambos al espacio. Consecuentemente la potencia de salida del transmisor y la sensibilidad de entrada del receptor se limitan.

domingo, 25 de noviembre de 2012

SATÉLITES DE NAVEGACIÓN Y CIENTÍFICOS

Un SATÉLITE que acompaña la rotación de la tierra permanecería estacionario en un punto del cielo. Con 3 satélite en órbita se asegura una cobertura completa y continua de la Tierra, excepción de las regiones polares.
 
Satélites de Navegación: estos aparatos son similares a los satélites geodesicos y se diferencian en que proporcionan información para que una aeronave o un barco pueda calcular su posición con mayor exactitud que por los métodos convencionales relacionados con la posición de las estrellas. Además de su uso para la navegación, estos satélites son utilizados por el hombre para labores de catástrofes y seguimientos de animales (de mar, agua y tierra).
Satélites Científicos: este tipo de satélites fue construido para obtener información sobre diferentes aspectos: vinculados co nuestro planeta entre los que sobresalen los siguiente.
  • Campo magnético entorno a la Tierra.
  • Intensidad de la radiación recibida.
  • Densidad y composición de la atmósfera.

SATELITES GEODESICOS Y DE COMUNICACIONES

Satélites Geodesicos: La observación permite determinar la forma y dimensiones de la Tierra. Estos satélites estan equipados con luces de destellos muy intensos. cada grupo de destellos se repite un número de veces por día. Para observar estos satélites y otros más, se han montado telescopios en diversos puntos de la superficie terrestre; con ellos se puede fotografiar en el cielo un campo extenso en breves intérvalos de exposición. 



Satélites de Comunicaciones: Las ondas de radio que se utilizan en las comunicaciones que se propagan en línea recta; aquellos llamados de onda corta tienen la propiedad de ser reflejados por ciertas capas ionizadas de alta atmósfera, reuniendolas hacia la superficie terrestre. las microondas no sufren reflexión y atraviesan esas capas, perdiendose en el espacio. las ondas cortas pueden alcanzar grandes distancias, las microondas tienen  un alcance limitado.

SATÉLITES METEOROLÓGICOS

Un satélite meteorológico es un tipo de satélite artificial que se utiliza principalmente para supervisar el tiempo atmosférico y el clima de la Tierra. Sin embargo, ven más que las nubes, las luces de la ciudad, fuegos, contaminación, auroras, tormentas de arena y polvo, corrientes del océano, etc., son otras informaciones sobre el medio ambiente recogidas por los satélites. Las imágenes obtenidas por los satélites meteorológicos han ayudado a observar la nube de cenizas del Monte Saint Helens y la actividad de otros volcanes como el Monte Etna. El humo de los incendios del oeste de Estados Unidos como Colorado y Utah también han sido monitorizados.
Otros satélites pueden detectar cambios en la vegetación de la Tierra, el estado del mar, el color del océano y las zonas nevadas. En 2002, el derrame de petróleo del Prestige en el noroeste de España fue recogido por el satélite europeo ENVISAT que, aunque no es un satélite meteorológico, dispone de un equipo (ASAR) que puede ver los cambios en la superficie del mar.
El fenómeno de El Niño y sus efectos también son registrados diariamente en imágenes de satélite. El agujero de ozono de la Antártida es dibujado a partir de los datos obtenidos por los satélites meteorológicos. De forma agrupada, los satélites meteorológicos de China, Estados Unidos, Europa, India, Japón y Rusia proporcionan una observación casi continua del estado global de la atmósfera.

El primer satélite meteorológico, el Vanguard 2, se lanzó el 17 de febrero de 1959. Se diseñó para que midiese la capa de nubes, pero debido a su eje de rotación pobre no pudo recoger una cantidad importante de datos útiles.
Se considera al TIROS-1 el primer satélite meteorológico con éxito, lanzado por la NASA el 1 de abril de 1960. El TIROS funcionó durante 78 días y demostró ser mucho más útil que el Vanguard 2. El TIROS sirvió como inicio para el programa Nimbus, cuya tecnología y técnicas han sido heredadas por la mayoría de los satélites de observación de la NASA y la NOAA.